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The Master equation framework for single electron transport is extended to include the Franck-Condon
effect that can dominate the transport properties of nanoelectromechanical devices. The quantum nature of the
resulting vibroelectronic states leaves a signature in the electronic shot noise, which is accounted for by careful
treatment of the coherences. Two model systems are shown to demonstrate the relevance of such a formulation.
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I. INTRODUCTION

Master equations for electronic transport through mesos-
copic devices are a well established tool to describe charge,1

spin,2 and quantum coherence3–5 effects in nanostructures.
Recently, with the emergence of nanoelectromechanical
�NEMS� devices,6–11 Master equations have been used to de-
scribe the dynamics of electron transport where the elec-
tronic and mechanical degrees of freedom are coupled, lead-
ing to new effects such as the Franck-Condon �FC�
blockade12–14 or quantum shuttling.15–18

The FC effect in such systems refers to the modifications
of electronic transition rates due to the overlap of initial and
final vibrational state in an analogous way to the FC prin-
ciple of molecular physics19 and can lead to a complete sup-
pression of transport when these states are orthogonal. It is
thus necessary to incorporate the FC effect into the Master
equation formalism when considering single electron trans-
port in NEMS.

The study of NEMS allows the observation of quantum
coherent behavior of objects �molecules or mechanical reso-
nators� that are big on the scale of smaller units �electrons,
atoms� and thus provide an intriguing way of realizing mac-
roscopic quantum mechanical effects. The signature of quan-
tum mechanical behavior is coherent interaction between two
states, which for single electron transport can be observed as
a resonance in the electronic noise spectrum.20 This behavior
can only be accounted for by considering the full density
operator of the system, i.e., keeping all coherences in the
Master equation.

In this paper, we describe in detail the derivation of a FC
Master equation with all coherences as well as its application
to example systems, where the mentioned features occur. In
our derivation, the overlap integrals between the initial and
final vibrational state of a tunneling event that modify the
transition rates follow from a careful treatment of the vibro-
electronic states. We then apply this Master equation to a
nanomechanical system, where the full account of the coher-
ences is crucial to observe an electronic finger print of co-
herent tunneling of the vibrational states. Also, we investi-
gate the dependence of the steady state coherences on
damping of the system. Furthermore, we propose another
system where this electronic finger print and its absence re-
veals an interesting insight into the inner dynamics of a sys-
tem under FC blockade conditions.

II. FRANCK-CONDON MASTER EQUATION

The general set-up we consider for vibrational assisted
transport is that of a small vibrational-electronic system
weakly coupled to two electronic reservoirs �left and right�,
such that the Master equation formalism can be applied.
Here, we discuss a form of Master equation that especially
accounts for the coherences and vibrational degrees of free-
dom of a NEMS. The Hamiltonian can be written as a sum of
the system Hamiltonian, the reservoir Hamiltonians and the
Hamiltonian that accounts for the coupling between them

H = Hsys + HRes + HT. �1�

Transport is assumed to take place under Coulomb blockade
conditions, therefore it is sufficient to treat only one addi-
tional electron on the dot. The eigenstates of the system de-
pend on a vibrational and an electronic quantum number. We
denote the states as �n ,��= �n�vib � ���el where �� �0,1�. It is
important to note that the vibrational part of these states
depends also on the electronic quantum number, because the
electronic content of the system changes its potential and
consequently the vibrational eigenfunctions change with the
electronic content. To take this into account when dealing
with the vibrational parts only, we will write the correspond-
ing electronic quantum number as an index to the vibrational
kets: �n ,����n�� � ���el.

It is assumed that the eigenvalue problem of the system
Hamiltonian is solved, so that it can be represented as

Hsys = �
i

�1,i�i,1�	i,1� + �
j

�0,j�j,0�	j,0� , �2�

where we treat the number of states of the charged system
independently from the number of states of the uncharged
system, hence the two sums. The reservoir Hamiltonians can
be written as

HRes = �
kL,R

�kck
†ck. �3�

The coupling of the system to the reservoirs is a purely elec-
tronic process, therefore we define creation and annihilation
operators of the electronic states of the system

PHYSICAL REVIEW B 80, 155437 �2009�

1098-0121/2009/80�15�/155437�10� ©2009 The American Physical Society155437-1

http://dx.doi.org/10.1103/PhysRevB.80.155437


d† = �1�el el	0� d = �0�el el	1� . �4�

With these system operators the coupling can be modeled
according to

HT = �
kL,R

Vk�ck
†d + d†ck� . �5�

We take this Hamiltonian to define an interaction picture,
with the free Hamiltonian H0=HRes+Hsys. The Liouville-von
Neuman equation in this interaction picture reads

�̇̃�t� = − i
H̃T�t�,�̃�t�� . �6�

Tracing out reservoir states and performing perturbation to
second order yields

�̇̃�t� = − �
0

t

TrRes�
H̃T�t�,
H̃T�t��,�̃�t����� , �7�

where also the initial condition TrRes�
H̃T�0� , �̃�0���=0 is as-
sumed. Expanding the commutators leads with some
straightforward algebra to the Master equation in interaction
picture3

�̇̃�t� = − �
kL,R

�
0

t

dt��Tk�2f��k�ei�k�t−t��
d̃�t�d̃†�t���̃�t�� − d̃†�t���̃�t��d̃�t��

− �
kL,R

�
0

t

dt��Tk�2�1 − f��k��e−i�k�t−t��
d̃†�t�d̃�t���̃�t�� − d̃�t���̃�t��d̃†�t��

− �
kL,R

�
0

t

dt��Tk�2f��k�e−i�k�t−t��
�̃�t��d̃�t��d̃†�t� − d̃†�t��̃�t��d̃�t���

− �
kL,R

�
0

t

dt��Tk�2�1 − f��k��ei�k�t−t��
�̃�t��d̃†�t��d̃�t� − d̃�t��̃�t��d̃†�t��� , �8�

where f��� are the Fermi functions. The important step, in which this derivation differs from others, is to now take matrix
elements of this equation in the eigenbasis of the system. This amounts to taking the matrix elements of the eight different
terms in Eq. �8�. The first one, for example, reads

	n,��d̃td̃t�
†

�̃t��m,�� = �
i,j

	n,��d̃t�i,1�	i,1�d̃t�
† �j,0�	j0��̃t��m,�� �9�

=�
i,j

exp�i��0nt − �1it + �1it� − �0jt���0	n�i�1 1	i�j�0��0	j,0��̃t��m,�� , �10�

and the other terms are treated similarly. Before transforming back into the Schrödinger picture, we carry out the Markov
approximation, which means we replace �̃�t��→ �̃�t� under the integral and which also allows us to replace the integral
0

t dt�→−�
� dt�.28 The transformation to the Schrödinger picture is done according to

d

dt
��t� = − i
H0,�� + e−iH0t d

dt
�̃te

iH0t. �11�

This finally yields our FC Master equation

d

dt
	n,����t��m,�� = − i���n − ��m�	n,���t�m,��

− �
�=L,R

i,j,i�,j�

�	���1i − �0j��
in
ij�	j�,0��t�m,����0 − 	���1n − �0j�
nj
mj�	j,0��t�j�,0���1��1

+ 	̄���1i� − �0j�
nj
i�j	i�,1��t�m,����1 − 	̄���1i − �0n�
in
i�m	i,1��t�i�,1���0��0

+ 	���1i� − �0j�
i�j
i�m	n,���t�j,0���0 − 	���1m − �0j��
nj
mj�	j,0��t�j�,0���1��1

+ 	̄���1i − �0j��
ij�
mj�	n,���t�i,1���1 − 	̄���1i� − �0m�
in
i�m	i,1��t�i�,1���0��0� , �12�

HANNES HÜBENER AND TOBIAS BRANDES PHYSICAL REVIEW B 80, 155437 �2009�

155437-2



where the summation is only over two common pairs of the
four indices i , j , i� , j� in each term and we defined the rates
	����=��f���� for tunneling onto the dot and 	̄����=��
1
− f����� for tunneling off the dot. The tunneling coupling
strength is defined as ��=2������=2��k�Tk�2���−�k�.

When deriving the Master equation for such a system
with vibrational and electronic degrees of freedom as out-
lined above, one encounters nonzero overlaps of the form

ij = 1	i � j�0, which are the FC factors, well-known from mo-
lecular quantum mechanics:19


ij = �
0

�

dxi1�x� j0�x� . �13�

It is an important feature of our derivation of the Master
equation that these factors occur naturally and do not need to
be included using phenomenological arguments.

We would like to stress two important points regarding
this form of a Master equation. First, we note that all coher-
ences have been retained, to account for the full coherent
behavior of the system, thus arriving at a somewhat different
result than the canonical Master equation. However, under
the assumptions that the coherences are zero, Eq. �12� yields
the matrix elements of a Lindblad form Master equation.
Those coherences that are not diagonal with respect to the
electronic quantum number decouple from the rest of the
Master equation, i.e., 	n ,0���m ,1�= 	n ,1���m ,0�=0. Second,
we point out that the FC factors generally do not enter as
squared values, which is usually the case in approaches using
rate equation or Lindblad form Master equations.12,14 In-
stead, our derivation yields products of different FC factors,
so that their sign becomes important. That means the factors
modulating the transition amplitudes of coherences can be
negative, while for the populations, the factors are squared
values in accordance with the other approaches.

III. EXAMPLE SYSTEMS

A. Model I

We now apply the Master equation �12� to a model where
its full account of the coherences is the crucial point to detect
coherent dynamics within the system. The model is a single
mode oscillating nanostructure realized in several experi-
ments either as a molecule,6,21 a carbon nanotube,22–24 or as
an etched GaAs nanoscale rod.25 We describe the electronic
properties of the system as a single level quantum dot. The
electronic coupling to the environment, namely, a gate or a
substrate, leads to an image charge effect when the dot is in
an occupied state. We model this system with the Hamil-
tonian

H =
P2

2M
+

1

2
M�0

2�a − r�2 − d†d
e2

4��0

1

2r · û
, �14�

where a is the equilibrium position of the harmonic vibra-
tion, so that the origin is on the surface where the image
charge of the dot electron forms �cf. Figure 1�. The unit
vector û points in the direction perpendicular to this plane.
We note that a similar Hamiltonian has been used to model a

two electron system on a quantum, the so-called quantum dot
Helium.30,31

The various parameters of the model can be combined to
the two dimensionless parameters

� �
M�0

�
a2 =

a2

l0
2 , � �

e2Ma

8�2��0�r
= �

Ea

��0
. �15�

The parameter � relates the oscillator length l0 to the dis-
tance of the system to the surface and thus controls the shape
of the potential for the uncharged dot. The parameters � is
the scaled Coulomb coupling of the dot electron with the
environment

Ea �
e2

4��0�r2a
. �16�

Considering only the direction perpendicular to the plane, we
can rewrite the system Hamiltonian as the dimensionless op-
erator

H = −
1

2

�2

�x2 +
�2

2
�1 − x�2 − d†d

�

x
. �17�

1. Potentials and wave functions

There are two different potentials for this system, depend-
ing on the electronic content of the dot. When the dot is
empty, the potential is just the harmonic potential shifted by
the distance a= �a� with the eigenstates denoted �n ,0� �cf.
Sec. II for notation�. When the dot is charged, however, the
system potential is a superposition of this harmonic potential
and the Coulomb potential of the image charge as shown in
Fig. 2. We note the resemblance of the system Hamiltonian
�14� to the Hamiltonian of the Hydrogen atom for the s or-
bital. We use this similarity in order to express the Hamil-
tonian in the basis of the Hydrogen eigenstates, which are the
Laguerre functions Eq. �A1� �cf Appendix� and we are thus
able to exactly solve the system by numerical diagonaliza-
tion.

The eigenvalue spectrum �Fig. 3� as a function of the
oscillator parameter � shows the two characteristics of its
underlying potential. For �=0, the eigenvalues have the
1 /n2 spacing of hydrogen atom eigenstates. For increasing
�, i.e., an increasing contribution of the harmonic term to

�

�

� � �

�

FIG. 1. Schematic model of the considered system: a vibrating
structure with a single electron quantum dot near a plane where an
image charge effect occurs.
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the potential, the spectrum approaches the fan like structure,
which is typical for harmonic oscillator spectra.

Another important feature of the spectrum is the occur-
rence of level anticrossing, which points toward coherent
interaction between the two states. This is supported by the
shape of the wave functions shown in Fig. 4. The wave func-
tions are mainly localized either to the left, where the poten-
tial has the hydrogen-like singularity, or to the right �har-
monic potential�. The comparison between the first and the
second eigenfunctions suggests that the eigenstates are
bonding/antibonding superpositions of a “left” and a “right”
state, similar to the two-level eigenbasis. In this way, the
potential of the charged electrovibrational system �Fig. 2�
allows for states to be formed as superpositions of states like
the hydrogen ground state and harmonic oscillator-like
ground states. This superposition would be accompanied by
coherent oscillation between these two states that are pre-
dominantly localized in a left/right regime. This picture is
supported by the occurrence of level anticrossing in the ei-
genvalue spectrum of the Hamiltonian of the charged system,
Fig. 3. From the two-level system, it is known that indeed
level anticrossing is a feature of two coherently interacting
quantum states.

We use the exact eigenfunctions �n ,1� of the charged sys-
tem and the harmonic oscillator eigenstates of the uncharged
system to compute the FC factors according to Eq. �13�. As
mentioned above, these transition amplitudes can assume
negative values and indeed Fig. 5 shows even oscillating
behavior of some FC factors as functions of �, which means
that they vanish for certain � values. This leads to a suppres-
sion of a transport channel that has been called FC
blockade.12,14

2. Damping, coherences, & noise

Damping of the system is modeled by rewriting the
Hamiltonian

0 0.5 1 1.5 2 2.5
�100

�50

0

50

100

V
(x

)

x

Ω = 10

Ω = 20

FIG. 2. �Color online� Potential of the charged system for dif-
ferent parameters �� �10,12,14,16,18,20�. Near the origin, the
potential has a hydrogen-potential-like shape, while for larger x
values the shape of the harmonic potential dominates. With increas-
ing �, the harmonic character becomes more pronounced at small x
values, leading to a potential well, with minimum around x=1.
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FIG. 3. �Color online� Eigenvalue spectrum of the Hamiltonian
�14� for �=12 as a function of the oscillator parameter �, showing
the six lowest eigenvalues. For �→0, the spectrum has the 1 /n2

characteristic of the Hydrogen atom, while for large �, the spec-
trum assumes the fanlike shape typical for harmonic spectra. At
intermediate values of �, we observe a level repulsion between the
first and the second level.
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FIG. 4. �Color online� The first two Eigenfunctions of the
Hamiltonian �14� for values of the oscillator parameter � before
and after the level anticrossing. The two wave functions exchange
their characteristics at this point, while keeping the properties of the
first and second state.
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FIG. 5. �Color online� FC factors 
1,j and 
2,j as functions of the
oscillator parameter �, which modify the transition rates between
the charged and the uncharged oscillator states. We note that they
can assume negative values and even vanish for certain � values,
thus blocking the corresponding transition.
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H = �0a†a − d†d
e2

4��0

1

2r · û
�18�

and coupling a bosonic bath to the vibrational operators a†

and a, which under rotating wave approximation leads to a
Lindblad form Master equation

�̇�t� = −
	

2
�a†a� + �a†a − 2a�a†� , �19�

which is additive with the electronic transport Master equa-
tion �12�.

We couple this system to two leads as described in Sec. II.
Here, we concentrate on those parameter values where the
anticrossing occurs in the spectrum, e.g., �=12 and 9��
�17. For these parameters, it is reasonable to consider only
the two lowest eigenstates of the system, since the separation
to the next higher level is on the order of one magnitude
larger than the level spacing in the level repulsion region.
For the uncharged system such argument does not apply,
since we are dealing with an equally spaced harmonic oscil-
lator spectrum. So in this case, truncation of the Hilbert
space has to be justified by numerical arguments, such the
results converge as a function of the basis size. We found that
a number of 10 uncharged oscillator states is reasonable.

To calculate the current and the current noise, we define
the quantum jump operator, that is equivalent to the current
operator within the Master equation framework.26 Defining
the Master equation with a Liouvillian superoperator �̇�t�
=L��t� the Liouvillian can be split into two parts: L=L0
+LJ, where LJ is the part of the Master equation that ac-
counts for the transitions at the left �right� lead and is there-
fore defined to be the quantum jump generator. L0=L−LJ is
the remaining part of the Liouvillian. This means in Eq. �8�,
we identify the terms that contain d̃†�̃d̃ and d̃�̃d̃† and keep
track of them through the derivation of the Master equation,
so that we know to which terms they correspond in the final
form of the FC Master equation. The current and the current
noise are then readily calculated from

I = 		0�LJ�0�� �20�

S��� = I − 2 Re
		0�LJR���LJ�0��� , �21�

where 		0� • �0��=Tr
1•�stat�, with �stat being the stationary
solution of the Master equation.27

3. Results

In Fig. 6, we show the calculated noise spectrum for sev-
eral parameters. Comparison to the eigenvalue spectrum
�Fig. 3� shows the sensitivity of the frequency dependent
noise to the level anticrossing. We observe a resonant peak in
the noise at those frequencies that correspond to the energy
difference of the eigenvalues. Furthermore, the height of this
peak greatly depends on the level anticrossing, reaching its
maximum when the levels are closest and vanishing com-
pletely for � values away from the anticrossing point. This is
a clear indicator for increased internal dynamics due to level

coupling. Consequently, we interpret this behavior of the
electronic noise spectrum as a fingerprint of coherent tunnel-
ing between the two vibrational states.

In the calculations shown in Fig. 6, the coherences of the
steady state density operator all vanish. We would like to
point out, however, that this feature of the noise spectrum
cannot be found if one uses a simple rate equation approach
or a Lindblad form Master equation, as shown in Fig. 6
�black lines�, which shows a calculation where all coher-
ences are set to zero. It is the retaining of the full coherences
as we did in deriving our Master equation that enables us to
account for the coherence effects in the noise, although they
are zero in the steady state case.

The situation changes, however, if we include damping of
the oscillator as described above. In this case, we find finite
coherences already in the steady state. Figure 7 shows sev-
eral examples: the general trend is that coherences are small
compared to the populations, but the average over all coher-
ences grows as a function of the mechanical damping. The
two dissipation mechanism, escape of electrons at rate 	̄�

and mechanical damping at rate 	, thus compete with each
other: the energy eigenbasis selected by pure electronic
damping is no longer the preferential “pointer state” basis if
mechanical damping 
which refers to the uncharged oscilla-
tor basis, cf. Eq. �19�� is also present.

B. Model II

To further illustrate how our Master equation accounts for
the subtle interplay between coherences and FC factors when
considering current noise, we introduce another model that
can be seen as a variation in the first model. We propose a
system where a vibrating nanostructure interacts with two
image charges as a result of a charging process. The axis
along which the two image charges act on the oscillator is
perpendicular to the direction of electron transport, to rule

0 1 2 3 4 5 6 7
0.8

1.0

1.2

1.4

1.6

F
(ω

)

ω

FIG. 6. �Color online� Frequency-dependent Fano factor F���
=S��� / I for systems with finite bias VBias=�L−�R=40 and asym-
metric tunneling coupling �L=1 / �2��=2�R and different oscillator
parameters �=13 �lowest line� to �=14.2 �highest line�, which is
the interval in which the level anticrossing in the eigenvalue spec-
trum occurs ���13.6�. The labels refer to the lowest line, all other
lines have an offset of 0.05n. The colorful lines are results obtained
using the FC Master equation �Eq. �12��, while the black lines are
the corresponding results from a calculation where all coherences
are set to zero.
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out shuttle effects, cf. Fig. 8. In the uncharged state, the
system is a normal harmonic oscillator, but when it is
charged with an electron the effect of the two image charges
is such that its potential has two singularities at the location
of two scanning tunnel microscope �STM� tips. Here, we do
not use the STM tips to probe the system, but simply as a
means of applying metallic “electron-mirrors” in a controlled
way. The harmonic potential of the uncharged oscillator is
thus reduced to a local minimum at the position of the equi-
librium in the uncharged state, Fig. 9.

The Hamiltonian of the charged system now reads, analo-
gously to our previous formulation 
cf. Eq. �17��

H = −
1

2

�2

�x2 +
�

2
�x − 1�2 + d†d� �

x − 2�
−

�

x
� . �22�

Since the charged system is only defined for x� �0,2��, this
system is very similar to the basic quantum mechanics ex-
ample of a particle in the infinite potential box, only that
here, we have some interesting potential �Fig. 9� inside the
box. Therefore, it is convenient to diagonalize this Hamil-
tonian in the basis of sine-functions

�k�x� =
1

��
sin

k

2
x . �23�

It turns out that this basis is very efficient, so that conver-
gence of the eigenvalues with respect to basis size is easily
reached with a set of 100 basis functions.

1. Spectrum and wave functions

The spectrum of H 
Eq. �22�� Fig. 10 shows level anti-
crossings and in general the same characteristics as in our
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ρ

n
ν

m
µ

k

FIG. 7. �Color online� Moduli of steady state solutions of the FC Master equation �12� for �=12 and �=11 �top� and �=15 �bottom�
with 20 different values of the damping parameter 	 in the interval �0,10�. The scale goes from blue �black� through red �gray� to yellow
�light gray�. The four indices of the matrix elements of the Master equation are mapped to the one index k via k=��,1
2�n−1�+m�
+��,0
4+10�n+1�+m�, which means that the equally spaced peaks refer to the populations of the uncharged oscillator states and the peaks
at k=1 and k=4 are the populations of the charged states. We observe that the coherences are all smaller than the populations and that with
increasing damping the populations of the higher uncharged states vanish as well as their coherences. Some coherences, however, increase
with increasing damping, leading to an increase in the coherences on average.

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � �
� � �
� � �
� � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
�

� � �

� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

L R

ΓL ΓR

−e

e

e

FIG. 8. �Color online� The proposed model. The structure is
suspended with contacts to a source �l� and drain �r�, while it expe-
riences, in its charged state �−e�, the images charges of two metallic
STM tips �e�, which are symmetrically applied perpendicular to the
transport direction ��L ,�R�.

0 1 2 3 4 5 6

�14

�12

�10

�8

�6

�4

V
(x

)

x

FIG. 9. �Color online� Potential of the Hamiltonian �22� for �
=16 and various values for � between 1 and 2.5.
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previous system, however, we notice one feature, namely, the
degeneracy of pairs of levels before the level anticrossing
points. This degeneracy is due to the symmetry of the poten-
tial and indicates that the two degenerate states do not inter-
act coherently, because they are localized above the two sin-
gularities of the potential, separated by the bulge in between.
Interestingly, this degeneracy is lifted at those points where
there is an anticrossing of both levels with the next higher
band, pointing toward coherent tunneling between these
states. In the following we will consider this level anticross-
ing region of the 5th and 6th states with the 7th state, cf.
Fig. 10.

This view of the behavior of the eigenstates of the
charged oscillator is clearly supported by the shape of the
potential and the wave functions at the notable point of the
level crossing, Fig. 11. The two degenerate states �5,1� and
�6,1� are localized so deeply that they do not see each other
through the potential hump, whereas the third state seems to
be a remainder of the lowest harmonic oscillator state, being
mainly localized in the metastable local minimum. As � in-
creases, this parabolic minimum becomes more and more
important until it becomes the prevalent feature of the poten-
tial. This means that there is less and less possibility for the
lower states to be localized near the edges, so that they are
finally pushed into the parabolic well where they form super-
positions with the third state, finally resembling the usual
harmonic oscillator states.

2. Transport

We apply our Master equation to this system, by coupling
these three charged states to two empty states. Using the
exact wave functions, we compute the FC factors. Due to the
symmetry of the wave functions only three of the six pos-
sible transitions ���1,0� , �2,0��↔ ��5,1� , �6,1� , �7,1��� have
nonzero FC factors 
cf. Figure 12�. We do not neglect the
lower lying charged states, but their FC factors vanish for

those � values we are considering here and thus they do not
contribute to the transport, i.e., are FC blocked.

3. Results

In Fig. 13, we show the calculated noise spectrum scan-
ning the oscillator parameter � through the level splitting
point. To demonstrate the importance of the correct treatment
of the FC factors, we compare the result we obtain using the
correct FC factors to the noise spectra calculated when al-
lowing the �1,0�↔ �6,1� transition that is otherwise forbid-
den due to a vanishing FC factor. Considering first the latter
the case, where the FC blockade is lifted, we observe that for
those � values where the two lower states are still degener-
ate, there is one single resonance corresponding to the energy
difference between the degenerate and the third state. Con-
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FIG. 10. �Color online� Spectrum of the Hamiltonian �22� for
the Coulomb parameter �=16. Low lying states are pairwise degen-
erate before they experience level anticrossing with the next higher
lying state.
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sequently, this resonance occurs at smaller and smaller ener-
gies until the level splitting point is reached. After this point,
the noise spectrum shows three resonances corresponding to
interactions between all charged states �5,1� , �6,1� and
�7,1�, which can be confirmed by comparing the level spac-
ing of the charged states �Fig. 10� with the frequencies �
where the resonances occur. Turning now to the case where
the �1,0�↔ �6,1� transition is blocked, we observe that the
behavior before the splitting point is the same as for the other
case, but that after this point, the peaks corresponding to
interactions �5,1�↔ �6,1� and �7,1�↔ �6,1� are completely
missing. The noise spectrum only shows the resonance be-
tween the states �5,1� and �7,1�. Due to the FC blockade of
this particular transition �1,0�↔ �6,1�, no coherent interac-
tion can take place between this state and the other charged
states, although coherent interaction takes place when all
states are charged form the same empty state. This very
particular interplay between the noise peak and the FC
blockade is visible only, because we used a Master equation
that correctly accounts for the coherences and the FC
factors.

IV. CONCLUSION

We have introduced a way of describing the effect of cou-
pling between mechanical and electronic degrees of freedom
on transport properties, by deriving a Master equation that
rigorously includes the FC factors and keeps all coherences
of the density operator. A main feature of this equation is that
the sign of the FC factors has to be kept. We could show that
the treatment of the coherences is essential to observe the
internal dynamics of a nanomechanical system, where the
electronic degree of freedom is coupled to the vibrational

motion by considering the changing potential a quantum dot
experiences under single electron transport due to electronic
interaction with the environment. We considered two models
for which we obtained the microscopically exact wave func-
tions which have features known from two-level systems and
used them to include damping of the vibrational motion into
the model and calculate the exact FC factors. The role of the
coherences becomes important when considering higher or-
der transport properties, such as shot noise. Although the
coherences vanish in the steady state solution for an un-
damped system, they are crucial for noise calculations, as we
have shown by comparison to results we obtained omitting
the coherences. Furthermore, the noise spectrum is extremely
sensitive to FC blocked transitions as is accounts for all in-
ternal coherent tunneling processes and thus can indicate the
absence of such interactions due to FC blockade. The damp-
ing of the vibrational motion has the expected effect of sup-
pressing excited vibrational states, but its influence on the
coherences is rather rich and merits, in our opinion, further
investigation.

ACKNOWLEDGMENTS

Discussions with S. Gurvitz, F. v. Oppen, and M. Schultz
are acknowledged. This work was supported by DFG under
Grant No. 1528/5-1 and the WE Heraeus Foundation.

APPENDIX: BASIS FOR SYSTEM HAMILTONIAN OF
MODEL I

The Hamiltonian �17� for the image charge system yields
some similarities to the electronic Hamiltonian of the Hydro-
gen atom. In fact, for �=0, it is exactly the radial part of the
Hydrogen atom Hamiltonian for vanishing angular momen-
tum l=0.19 Therefore, we choose the eigenstates of this
Hamiltonian

n�x� =��n − 1�!
2n�n!�

�2�

n
�3/2

e−�/nxxLn−1
1 �2�

n
x� �A1�

as the basis set to represent the full Hamiltonian, i.e., for
finite � values.

The diagonal matrix elements are

	n�H�n� = −
�2

2n2 +
�2

2
−

3�2

2�
n2 +

�2

4�2n2�5n2 + 1� ,

�A2�

and the off-diagonal elements

FIG. 13. �Color online� Frequency-dependent Fano factors F���
for different values of the oscillator parameter �. In the left panels,
the transition �1,0�↔ �6,1� has been allowed by letting the corre-
sponding FC factor 
�1,0�↔�6,1�=0.1. In the right panels, this transi-
tion is forbidden according to the correct treatment of the FC fac-
tors. The lines A and B indicate corresponding � values of the top
and bottom panels, which can be seen as cuts through the two-
dimensional plots.
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	n�H�m� = 	n��2�1 − x�2�m�

= − �2	n�x�m� +
�2

2
	n�x2�m�

= − �2��n − 1�!
2n�n�!

�2�

n
�3/2��m − 1�!

2m�m�!
�2�

m
�3/2�

0

�

dxe−�/nxxLn−1
1 �2�

n
x�xe−�/mxxLm−1

1 �2�

m
x�

+
�2

2
��n − 1�!

2n�n�!
�2�

n
�3/2��m − 1�!

2m�m�!
�2�

m
�3/2�

0

�

dxe−�/nxxLn−1
1 �2�

n
x�x2e−�/mxxLm−1

1 �2�

m
x� �A3�

remain to be calculated. To this end we use the relation29

�
0

�

e−bxx�Ln
���x�Lm

���x�dx =
��m + n + � + 1�

n ! m!

�b − ��n�b − ��m

bm+n+�+1 2F1�− m,− n;− m − n − �;
b�b − � − ��

�b − ���b − ��� ,

where 2F1 is the Hypergeometric function. This is already very close to the integrals in Eq. �A3�, if we identify

� → 1, b →
��n + m�

nm
, � →

2�

n
, � →

2�

m
. �A4�

However, we would like to have a x3 and x4 dependence. This is achieved by differentiating Eq. �A4� with respect to b

�b�b�
0

�

e−bxx�Ln
���x�Lm

���x�dx = �
0

�

e−bxx2+�Ln
���x�Lm

���x�dx

= �b�b
��m + n + � + 1�

n ! m!

�b − ��n�b − ��m

bm+n+�+1 2F1�− m,− n;− m − n − �;
b�b − � − ��

�b − ���b − ���
�b�b�b�

0

�

e−bxx�Ln
���x�Lm

���x�dx = �
0

�

e−bxx3+�Ln
���x�Lm

���x�dx

= �b�b�b
��m + n + � + 1�

n ! m!

�b − ��n�b − ��m

bm+n+�+1 2F1�− m,− n;− m − n − �;
b�b − � − ��

�b − ���b − ���
These expressions have to be normalized with the normalization factors of Eq. �A3�. Thus, we have obtained an algebraic
expression for the matrix elements of the Hamiltonian �17�.

1 C. W. J. Beenakker, Phys. Rev. B 44, 1646 �1991�.
2 D. Weinmann, W. Häusler, W. Pfaff, B. Kramer, and U. Weiss,

EPL 26, 467 �1994�.
3 T. Brandes, Phys. Rep. 408�5–6�, 315 �2005�.
4 S. A. Gurvitz and Ya. S. Prager, Phys. Rev. B 53, 15932 �1996�.
5 S. A. Gurvitz, Phys. Rev. B 57, 6602 �1998�.
6 H. Park, J. Park, A. Lim, E. Anderson, A. Alivisatos, and P.

McEuen, Nature �London� 407, 57 �2000�.
7 R. G. Knobel and A. N. Cleland, Nature �London� 424, 291

�2003�.
8 M. LaHaye, O. Buu, B. Camarota, and K. Schwab, Science 304,

74 �2004�.
9 A. Naik, O. Buu, M. LaHaye, A. Armour, A. A. Clerk, and M. B.

K. Schwab, Nature �London� 443, 193 �2006�.
10 A. D. Armour, M. P. Blencowe, and K. C. Schwab, Phys. Rev.

Lett. 88, 148301 �2002�.
11 M. P. Blencowe, Phys. Rep. 395, 159 �2004�.
12 J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 �2005�.
13 J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 95,

056801 �2005�.
14 J. Koch, F. von Oppen, and A. V. Andreev, Phys. Rev. B 74,

205438 �2006�.
15 D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Phys.

Rev. Lett. 92, 166801 �2004�.
16 A. D. Armour and A. MacKinnon, Phys. Rev. B 66, 035333

�2002�.
17 T. Novotný, A. Donarini, and A.-P. Jauho, Phys. Rev. Lett. 90,

256801 �2003�.
18 T. Novotný, A. Donarini, C. Flindt, and A.-P. Jauho, Phys. Rev.

Lett. 92, 248302 �2004�.
19 B. H. Bransden and C. J. Joachain, Physics of Atoms and Mol-

ecules �Prentice-Hall, Englewood Cliffs, NJ, 2005�.
20 H. Hübener and T. Brandes, Phys. Rev. Lett. 99, 247206 �2007�.
21 J. Park, Nature �London� 417, 722 �2002�.
22 S. Sapmaz, P. Jarillo-Herrero, Y. M. Blanter, C. Dekker, and H.

S. J. van der Zant, Phys. Rev. Lett. 96, 026801 �2006�.
23 V. Sazonova, Y. Xaish, H. Üstünel, D. Roundy, T. A. Arias, and

P. L. McEuen, Nature �London� 431, 284 �2004�.

MASTER EQUATIONS FOR QUANTUM TRANSPORT WITH… PHYSICAL REVIEW B 80, 155437 �2009�

155437-9



24 R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E.
Mariani, M. G. Schultz, F. von Oppen, and K. Ensslin, Nat.
Phys. 5, 327 �2009�.

25 E. M. Weig, R. H. Blick, T. Brandes, J. Kirschbaum, W. Wegsc-
heider, M. Bichler, and J. P. Kotthaus, Phys. Rev. Lett. 92,
046804 �2004�.

26 C. Flindt, T. Novotný, and A.-P. Jauho, EPL 69, 475 �2005�.
27 C. Flindt, T. Novotný, and A.-P. Jauho, Physica E �Amsterdam�

29, 411 �2005�.

28 A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302
�2004�.

29 I. S. Gradshteyn, Table of Integrals, Series and Products �Aca-
demic Press, New York, 1994�.

30 M. Wagner, A. V. Chaplik, and U. Merkt, Phys. Rev. B 51,
13817 �1995�.

31 D. Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. Rev.
B 47, 2244 �1993�.

HANNES HÜBENER AND TOBIAS BRANDES PHYSICAL REVIEW B 80, 155437 �2009�

155437-10


